在自然界的循环利用中,生物质一直扮演着至关重要的角色。作为一种取之不尽、用之不竭的可再生碳源,它不仅蕴藏着太阳赋予的化学能,还为人类提供了从能源到化学品的多种可能。然而,当谈到将生物质转化为氨基酸等含碳氮(C-N)化合物时,这一领域却依然处于探索的早期阶段。
今年 10 月份,来自西湖大学未来产业研究中心、理学院、人工光合作用与太阳能燃料中心的张彪彪课题组发现,甲醇加上硝酸盐,利用光催化就能生成甘氨酸[1],这一实验结果,支持了生命可能起源于无机物通过一系列化学反应逐步演化的观点。甘氨酸是目前所有氨基酸中,结构最为简单的一种。越简单,意味着越基础,不少复杂的氨基酸就是在甘氨酸的基础上衍生出来的。
最近,张彪彪课题组又公布了新发现。他们设计了一种基于锐钛矿型TiO₂ 的光催化系统,通过生物质光重整、硝酸盐还原和 C-N 偶联三步串联反应,将生物质与硝酸盐高效转化为甘氨酸。这一创新性的转化方法不仅展示了甘氨酸生成速率的突破(765 μmol/g/h)和优异的产率(15.3%),还揭示了硝酸盐在调控反应路径中的核心作用。这一成果发表在 ACS Catalysis 期刊,题为″Photocatalytic Conversion of Biomass and Nitrate into Glycine″。

接下来看看上述转化过程的三个主要步骤。
第一步:生物质光重整反应形成乙二醇。本研究中,生物质中的多元醇(如甘油)通过光催化反应被重整,生成甘氨酸合成的关键中间体乙二醇。研究团队采用锐钛矿型 TiO₂ 作为光催化剂,在 365 nm 紫外光照射下对甘油进行光重整反应。在该过程中,甘油优先通过 C-C 键选择性断裂生成乙二醇,乙二醇进一步氧化生成乙醛酸。实验验证了乙醛酸是生成甘氨酸的重要中间体,其与氨发生 C-N 键耦合反应,最终转化为甘氨酸。研究中检测到甘氨酸生成速率为 120 μmol/g/h,表明光催化反应能够保留 C2 中间体(如乙二醇和乙醛酸)的稳定性,为后续甘氨酸的高效合成奠定了基础。

图 生物质和硝酸盐通过一步法转化为甘氨酸的示意图
此外,实验发现反应的关键在于通过调控催化剂表面氧化活性,减少水溶液中活性氧的生成,从而显著降低甘油过度氧化的风险。这一过程为后续硝酸盐还原及甘氨酸合成奠定了基础,也验证了生物质在光催化转化中的潜在价值。

图 甘油和硝酸盐的光催化合成甘氨酸的过程
第二步:硝酸盐还原生成氨(NH₃)。硝酸盐的还原是甘氨酸合成中的另一个核心步骤。硝酸盐作为一种含氮化合物,广泛存在于废水中,其高效利用对能源和环境具有重要意义。然而,如何选择性地将硝酸盐还原为氨而避免副产物生成,是这一研究面临的重要挑战。
实验结果显示,在锐钛矿 TiO₂ 催化剂的作用下,硝酸盐被还原为氨,同时释放出电子,与甘油的氧化过程形成协同作用。在优化实验中发现,当硝酸盐浓度为 20 mM时,甘氨酸的生成速率达到最佳。这一浓度有效平衡了硝酸盐的还原效率与副反应的抑制作用,为 C-N 键的高效耦合提供了稳定的氮源。
第三步:C-N 键的耦合生成甘氨酸。在转化的最后一步中,甘油的中间产物与硝酸盐还原生成的氨发生 C-N 键耦合反应,形成甘氨酸。这一步对催化剂的选择性要求极高,涉及多步氧化还原反应和中间体的稳定化。
研究发现,Ba²⁺ 修饰的 TiO₂(Ba²⁺-TiO₂)在这一过程中表现出了优异的性能。通过引入钡离子,催化剂表面的羟基数量显著增加,形成了更高活性的氧化物种,增强了反应的选择性。优化后的 Ba²⁺-TiO₂ 催化剂在甘油与硝酸盐的反应中实现了甘氨酸生成速率的显著提升,达到了 765 μmol/g/h,甘氨酸的产率高达 15.3%。通过表征分析发现,Ba²⁺ 修饰不仅增加了催化剂表面的活性羟基,还提高了电荷分离效率,延长了光生电子的寿命。与纯 TiO₂ 催化剂相比,Ba²⁺-TiO₂ 的甘氨酸生成速率提高了近 6 倍。
更加令人惊讶的是,这种技术具有普适性,生物多元醇、糖甚至预处理后的木屑都可以作为反应底物,与硝酸盐结合生成甘氨酸。这一突破性进展,不仅为氨基酸的绿色合成打开了大门,也为废弃物的资源化利用提供了全新思路。

图 将生物质(白杨粉)和硝酸盐转化为甘氨酸的两步策略
西湖大学张彪彪课题组的研究为可持续化学注入了新的活力。通过巧妙运用光催化技术,将废水中的硝酸盐和可再生生物质转化为重要的氨基酸甘氨酸,不仅实现了″变废为宝″,更为未来绿色化学品的生产提供了示范性方案。期待这一″阳光魔法″不断突破,为我们的生活和工业注入更多绿色动力,引领环保与技术的双赢新篇章!
参考链接:
1.Li P, Zhao W, Wang K, et al. Photocatalytic Synthesis of Glycine from Methanol and Nitrate[J]. Angewandte Chemie International Edition, 2024: e202405370.
2.Li P, Zhang B. Photocatalytic Conversion of Biomass and Nitrate into Glycine[J]. ACS Catalysis, 2024, 14: 18345-18353.
来源: 公众号:生辉SynBio
IHARA在巴西推出两款含苯啶菌酮和ipflufenoquin的全新杀菌剂,助力果树病害防治
近日,跨国公司IHARA独家向AgroPages披露,推出两款创新杀菌剂MIGIWA(活性成分:ipflufenoquin)和PROPERTY(活性成分:苯啶菌酮),专门用于防治苹果黑星病和白粉病。这些病害直接影响苹果、甜瓜、葡萄、芒果、玫瑰和其他果树作物的产量和果品质量。首款推出的产品是MIGIWA,这款新产品在防治苹果黑星病方面特别有效,即
2025-06-2528
植物线虫″间谍蛋白″劫持宿主免疫系统被破译,线虫防控有了新视角
近日,中国农业科学院植物保护研究所作物线虫与细菌病害监测与防控团队在国际知名学术期刊《New Phytologist》(IF5yr=10.2)在线发表题为″Degradation of AtSRC2 by SKP1/BTB/POZ domain effectors in Heterodera schachtii inhibits RBOHF via ROS and enhances infection″研究成果。该研究首次揭示: 甜菜孢囊线虫通过分
2025-06-1920
阿根廷AgriCheck新接种剂增产潜力达70%,可在播种前300天处理种子
阿根廷AgriCheck公司在阿根廷大型农业展会AgroActiva 2025上推出了创新型Easy Flow接种剂。该产品用于接种玉米种子,含麦角菌科真菌,借以防治多种病虫害。其真菌可在土壤和植物根部定植,形成抵御病原体和线虫的保护屏障。据AgriCheck介绍,Easy Flow的独特之处在于其基于滑石粉和石墨的独特配方。这种成分在接种过程中简
2025-06-1825
Albaugh公司新型苯磺隆除草剂获保加利亚官方批准
Albaugh公司近日宣布,其新型选择性除草剂FLAME®已获得保加利亚官方授权,可在当地进行商业化销售和使用。FLAME®采用WG(水分散颗粒)剂型,有效成分为50%苯磺隆,登记号为02179-ПРЗ/1/30.04.2025г.。该产品获准用于多种谷物作物,包括大麦、小麦、燕麦、黑麦、斯佩尔特小麦、黑小麦和硬粒小麦。FLAME®在出苗后早期
2025-06-1623
科迪华在美推出新型氟茚唑菌胺杀菌剂,三重作用防控叶面病害
近日,科迪华公司宣布即将在美国推出 Forcivo™杀菌剂,该产品凭借三种有效活性成分——粉唑醇、嘧菌酯和氟茚唑菌胺,能够为玉米和大豆提供叶面病害防控。其通过重叠的预防和治疗活性,可有效控制焦油斑病、南方锈病和灰斑病等多种病害。Forcivo™杀菌剂具有以下特点:三重作用机制:三种活性成分协同作用,即使病害对某一
2025-06-1222
蓟马:微小之虫,何以成为全球农业的重大威胁?
蓟马是一类体型微小但危害巨大的农业害虫,通过直接取食和传播植物病毒对多种作物造成严重损失。全球已知的5500多种蓟马中,西花蓟马(Frankliniella occidentalis)、烟蓟马(Thrips tabaci)、茶黄蓟马(Scirtothrips dorsalis)和瓜蓟马(Thrips palmi)4种蓟马因其广泛的寄主范围、快速的繁殖能力和高效的病毒传播能力
2025-06-1039
南京农大成功设计并合成α-羟基羧酸结构新型除草剂先导化合物
近日,植物保护学院叶永浩教授课题组联合中科院上海有机所/南京师范大学周佳海教授课题组,在Nature Communications期刊上在线发表了题为″Substrate-based discovery of α-hydroxycarboxylic acid derivatives as potential herbicides targeting dihydroxyacid dehydratase″的研究论文。该研究创新性地以植物支链氨基酸
2025-06-0946
沈阳中化、红太阳等单位的农药及植保专利上榜中国专利优秀奖名单
近日,国家知识产权局发布了关于第二十五届中国专利奖授奖的决定,以对在实施创新和推动经济社会发展等方面作出显著贡献的专利权人、发明人(设计人)以及相关组织者给予表彰。其中,在第二十五届中国专利奖项目名单类别下,含7项农药及植保领域的研发专利,专利权人涉及沈阳中化、兰升生物和红太阳等农药企业。来源:国家知
2025-06-0938
中国农大杜凤沛教授团队成功构建负载戊唑醇与丙硫菌唑的纳米递送体系,用于小麦赤霉病防治
近日,中国农业大学理学院杜凤沛教授团队在《先进功能材料》(AdvancedFunctional Materials)上发表研究论文《基于生物刺激素的智能纳米载体:通过多机制包封、协同增效与响应释放提升小麦赤霉病防治效果》(Multi-mechanism encapsulation in a bio-stimulant-based smart nanocarrier enhances fusarium head blight con
2025-06-0641
辣椒病毒防治新路径:贵州大学院士团队研发出新型抗病毒剂
2025年6月1日,贵州大学绿色农药全国重点实验室博士生杨玉嫒作为第一作者,宋宝安院士作为通讯作者,在国际知名学术期刊Journal of Advanced Research(中科院一区TOP,Impact Factor = 11.4,CiteScore = 21.6)上在线发表″Antiviral activity and mechanism of purine morpholine nucleoside analogues incorporating a su
2025-06-0424